
KRDB RESEARCH CENTRE

KNOWLEDGE REPRESENTATION
MEETS DATABASES

Faculty of Computer Science, Free University of Bozen-Bolzano,
Via della Mostra 4, 39100 Bolzano, Italy

Tel: +39 04710 16000, fax: +39 04710 16009, http://www.inf.unibz.it/krdb/

KRDB Research Centre Technical Report:

Supporting the Design of Ontologies for
Semantic Data Access

L. Lubyte, S. Tessaris

Affiliation KRDB Research Centre for Knowledge and Data,
Free University of Bozen-Bolzano,
Via della Mostra 4, 39100 Bolzano, Italy

Corresponding author L. Lubyte
lubyte@inf.unibz.it

Keywords ontology design, predicate emptiness,
ontology based data access

Number KRDB09-03
Date 04-05-09
URL http://www.inf.unibz.it/krdb/

c©KRDB Research Centre for Knowledge and Data. This work may not be copied
or reproduced in whole or part for any commercial purpose. Permission to copy in whole
or part without payment of fee is granted for non-profit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the KRDB Research Centre, Free University of Bozen-Bolzano, Italy;
an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose
shall require a licence with payment of fee to the KRDB Research Centre.

Abstract

The use of ontologies to mediate the access and integration of relational data sources has
been proved successful by recent works in the area of the Semantic Web. In particular, we
consider a common information integration scenario in which several relational sources can
be queried through a single (global) ontology providing a reconciled and integrated view of
the underlying sources. Although data sources can be integrated into the information system
by providing direct mappings from the relational tables to the given ontology, we believe
that a more principled approach consists in wrapping each information source by means of
a (local) ontology which precisely characterise the data source. The process of mapping the
local ontology to the global one is facilitated by the fact that global and local ontologies share
the same logical formalism.

While the global ontology provides a general view of the whole system, the local ontologies
must be close to the data they wrap. This means that the new terms that they introduce
must be “supported” by data from the relational sources; i.e. when queried, they should
return nonempty answers. The problem of designing these wrapping ontologies is non-trivial
and to tackle it those wrappers are usually carefully handcrafted by taking into account the
query answering mechanism. In this report we address the problem of supporting the ontology
engineer in this task. We provide an algorithm for verifying emptiness of a term in the enriched
ontology w.r.t. the data sources. In addition, we show how this algorithm can be used to guide
the ontology engineer in fixing potential terms unsupported by the data.1

1Preliminary results on the research reported here appeared in the Working Notes of Description Logics
Workshop [14].

i

Contents

Abstract i

1 Introduction 1
1.1 Motivations . 1
1.2 Outline of the Report . 3

2 Formal Framework 4
2.1 Ontology Language . 4
2.2 Queries over ELHI Ontologies . 5
2.3 Wrapping Relational Sources . 5
2.4 Virtual ABox . 6
2.5 Emptiness of Ontology Terms . 7

3 Emptiness Testing and Repair 8
3.1 Testing Emptiness . 8

3.1.1 Preliminary Notions . 8
3.1.2 Datalog Predicate Emptiness: Known Results 9
3.1.3 Emptiness Testing Algorithm . 9

3.2 Repairing Empty Terms . 12
3.2.1 Generating Repair Guidelines . 12

4 Implementation and Evaluation 14
4.1 Tool for Emptiness Testing and Repair . 14
4.2 Usability Study . 14

4.2.1 Procedure . 15
4.2.2 Results . 17

5 Related Work 20

6 Conclusions and Future Work 21

A TVListings Ontology 22

Bibliography 22

ii

Chapter 1

Introduction

1.1 Motivations

The use of a conceptual model or an ontology to wrap and describe relational data sources
has been shown to be very effective in several frameworks involving management and access
of data. These include federated databases [19], data warehousing [6], information integration
through mediated schemata [12], and the Semantic Web [10] (for a survey see [21]). Ontologies
provide a conceptual view of the application domain, which is closer to the user perspective.
The automated reasoning can be leveraged to provide a better user support in exploring and
querying the underlying data sources.

In this report we focus on the problem of designing ontologies which describe a relational
data source, and whose purpose is to provide a semantically enriched access to the underlying
data. We use the term data wrapping ontologies to distinguish these ontologies from domain
ontologies; whose purpose is to model a domain.

In order to illustrate the different roles of the two kinds of ontologies let us consider
a scenario in which several independent databases containing data on a given domain (e.g.
showbiz) should be accessed through a single web portal driven by an ontology. This ontology is
tailored to provide a general view over the domain and enable the users (or software agents) to
retrieve information from the portal. For this reason the “portal ontology” doesn’t necessarily
use the same vocabulary as the data sources and we consider it a domain ontology. In order
to retrieve data from the sources, the domain ontology should be “connected” to the data
sources. This can be done either by defining mappings from the relational tables in the data
sources to the terms in the ontology (see e.g [18]), or by creating smaller ontologies wrapping
the data sources and aligning those with the domain ontology.

We believe that the second approach has several advantages over the use of direct mappings
over the data sources. First of all, it enhances the modularity of the system, since the different
components can be designed independently and then integrated. In fact, the domain ontology
can be designed almost independently of the details of the data sources; while data wrapping
ontologies are smaller and can be automatically bootstrapped from the data sources (see [15]).
Moreover, there are well established techniques to support the alignment of ontologies (see [9]).

In order to maximise the benefits of using data wrapping ontologies, these should be rich
enough to ease their integration with the domain ontology and, at the same time, precisely

1

characterise the data they wrap. Ontologies extracted automatically from data sources (e.g.
by analysing the constraints in the logical schema) are faithful representations of the data
sources; however, they are usually shallow and with a limited vocabulary. For this reason,
they can be used as bootstrap ontologies, and the task of enriching the extracted ontology
is crucial in order to build a truly effective ontology-based information access system. The
process of enriching an ontology involves at least the introduction of new axioms and/or new
terms. While, from a purely ontological viewpoint, an ontology can be arbitrarily modified,
we need to bear in mind that the ultimate purpose of the data wrapper is to access the
information available from the data sources. This means that we should be able to use the
newly introduced terms in order to retrieve data from the sources.

It is easy to provide examples where such new terms can be completely useless; in the
sense that queries over these terms will always return empty answers. This not necessarily
because they are unsatisfiable in the usual model theoretic meaning but because there is no
underlying data supporting them. Let us consider the simple example depicted in Figure 1.1,
where the bottom part represents the logical schema, the middle part the data source terms
(connected with the relational sources) and the top part the enriched fragment of the ontology.
It is obvious that any query on the Actor would return an empty answer, whatever the data
sources may contain; on the other end, the concept represented by the same term would be
satisfiable. The situation would be different if the Actor was also restricted to elements whose
range w.r.t. person role is restricted to ActingRole. In this case, there can be instances of the
database for which the same query on Actor would return a non empty answer.

1,nPerson

So
ur

ce

sc
he

m
a

Ex
tra

ct
ed

 o
nt

ol
og

y
En

ric
he

d
on

to
lo

gy

name

... ...
nameid

cast_info

... ...
role_idperson_id

Actor

Role

... ...
nameid

role_type

person_role

ActingRole

Figure 1.1: Example of simple data wrapper.

In order to ensure that queries over ontologies wrapping data sources provide sensible
answers, these ontologies must be carefully handcrafted by taking into account the query
answering algorithm. To the best of our knowledge, little or no research has been devoted to
the support of the ontology engineer in such a complex and error prone task. Our research is
directed to techniques and tools to support this modelling process.

The foundation of our technique is the problem of verifying the emptiness of a given term
w.r.t. a set of data source terms (i.e. terms “connected” to data sources). Given a Description

2

Logic (DL) theory composed by Tbox and Abox over a given vocabulary (see Section 2.1 for
details), we define a subset of the concepts and roles as data source terms. Given a Tbox, a
concept or role term is empty iff the certain answer of the query defined by the term is empty
for all possible Aboxes whose assertions are restricted to data source terms. The idea is that
data (by means of Abox assertions) can only be associated to data source terms. Clearly the
problem is different from classical (un)satisfiability, because we impose a restriction on the
kind of allowed Abox assertions. Note that the two problems coincide when all the DL terms
are considered as data sources.

In [14] we introduced the above problem and presented some preliminary results; while
the contribution of this report is a generalisation the results presented in [14], by providing
algorithms to verify term emptiness for a more expressive class of ontology languages (see [3]).
In particular, a crucial gain in terms of expressive power of the language adopted in this work
is the ability to express inclusions among roles. In addition, we describe how this algorithm
can be used to support the user in the “repair” of the empty terms and we present a Protégé
plug-in implementing it. Finally, we present an empirical study showing the benefits of our
approach.

1.2 Outline of the Report

The report is structured as follows: in the next section we introduce the formal framework
upon which our technique lays its foundations. Then, in Chapter 3 we present the emptiness
testing algorithm and show how the information generated by this algorithm can be used to
repair empty ontology terms. In Chapter 4 we present a Protégé plug-in implementing our
approach, and a usability study involving external users. Then, in Chapter 5 we place our
work within the related literature. Finally, in Chapter 6 we draw the conclusions and our
future research plans.

3

Chapter 2

Formal Framework

In this chapter we introduce the formal framework for representing the ontology, queries over
the ontology, and show how the actual ontology is linked to relational data sources. Then, we
define the notion of predicate emptiness w.r.t. the data sources.

2.1 Ontology Language

The ontology language is based on the DL ELHI [3], an extension of EL [2], whose expressions
are built over an alphabet comprising symbols for atomic concepts, roles and constants. We
will consider constants in ELHI to be defined over the alphabet ΓO (disjoint from ΓV above)
of constant symbols for objects. Then, the abstract syntax for ELHI concept expressions is
the following:

B → A | ∃R | ∃R− | ∃R.A | ∃R−.A | B1 uB2,

where A is an atomic concept, R is an (atomic) role, and B is a basic concept. A TBox T
is a set of inclusion assertions of the form B1 v B2 or R1 v R2, and an ABox A is a set of
membership assertions of the form A(a) or R(a, b) with a and b constants in ΓO. An ELHI
ontology K is a pair 〈T ,A〉, with T a TBox and A an ABox.

As usual, the semantics is given in terms of first-order interpretations. An interpretation
is a pair I = (∆,.I) with ∆ an interpretation domain of objects, and I an interpretation
function that maps each atomic concept A to a subset AI ⊆ ∆, each role R to a binary
relation RI ⊆ ∆ × ∆, and each constant a in ΓO to an element aI ∈ ∆. Moreover, for
each a, b ∈ ΓO, a 6= b implies aI 6= bI , i.e., we adopt the unique name assumption. The
interpretation function is extended to basic concepts as follows:

(∃R)I = {a | ∃b.(a, b) ∈ RI} (∃R−)I = {a | ∃b.(b, a) ∈ RI}
(∃R.A)I = {a | ∃b.(a, b) ∈ RI → b ∈ AI}1 (B1 uB2)I = BI1 ∩BI2

An interpretation I satisfies an inclusion assertion B1 v B2 (resp. R1 v R2) if BI1 ⊆ BI2
(resp. RI1 ⊆ RI2). I satisfies a membership assertion A(a) (resp. R(a, b)) if a ∈ AI (resp.
(a, b) ∈ RI). Finally, I is a model for a KB K if it satisfies all assertions in T and A.

1The extension of (∃R−.A)I is defined in a similar way.

4

The use of an ontology language can be seen as an alternative to the use of standard
modelling paradigms of ER [7] or UML2 class diagrams. The advantage of an otology language
over these formalisms lies on the fact that it has clear and unambiguous semantics which enable
the use of automatic reasoning to support the designer. Indeed, ELHI ontology language is
able to capture most conceptual modelling constructs, including relationships among classes,
cardinality constraints in the participation of classes in relationships, and is-a relations among
both, classes and relationships.

Example 1. Consider the ER diagram in Figure 1.1. The constraints expressed in the diagram
can be represented in ELHI ontology using the following assertions:

(1) ∃person role.Role v Person (4) ActingRole v Role
(2) ∃person role−.Person v Role (5) Actor v Person
(3) Role v ∃person role−.Person

Assertions (1) and (2) correspond to the role typing (domain and range)3 of relationship
person role, stating, respectively, that the first component of person role is of type Person,
while the second, i.e., its inverse, is of type Role. Assertion (3) instead states mandatory
participation for Role to relationship person role (4) and (5) express is-a relation among the
respective classes.

2.2 Queries over ELHI Ontologies

To formulate queries over the ontology K we use conjunctive queries. A conjunctive query
(CQ) q over the KB K is an expression of the form q(x) ← body(x,y), where x are the so-
called distinguished variables, y are existentially quantified variables called non-distinguished
variables, q is a new predicate and body(x,y) is a conjunction of atoms of the form A(x)
or R(x, y), where A and R are respectively an atomic concept and a role from K, and x, y
are either constants in K or variables. q(x) is called the head of the conjunctive query, and
body(x,y) the body. Given a CQ q and a KB K, the answer to q over K is the set of tuples
qI of constants that substituted to x make the formula ∃y.body(x,y) true in I.

2.3 Wrapping Relational Sources

The purpose of data wrapping ontologies is to access data from relational sources. To this
end, some of the concepts and roles are mapped to data stored in a database and described
by a relational schema. We assume the reader is familiar with the basic notions of relational
databases [1]. We consider a fixed denumerable alphabet ΓV of value constants and we consider
databases over ΓV . A relational schema R consists of relation symbols, and a database instance
(or simply database) D over R is a set of relations with constants from ΓV as atomic values.

We adopt an ontology to relational data mapping schema in the spirit of the framework
presented in [18] for linking data to ontologies. For this purpose, we introduce a new alphabet
Λ of function symbols in ELHI, where each function symbol has an associated arity. Then,
we define the set τ(ΓV ,Λ) of all function terms of the form f(v1, . . . vn) such that f ∈ Λ with

2http://www.uml.org
3The fillers for person role role are not necessary for role typing and mandatory constraints expressed within

the assertions (1) – (3).

5

http://www.uml.org

arity n > 0, and v1, . . . vn ∈ ΓV . We require that the set ΓO used to denote objects in ELHI
coincides with τ(ΓV ,Λ). This implies that different function terms in τ(ΓV ,Λ) are interpreted
as different objects in ∆. Then, we define an ELHI data wrapping ontology with mappings
as a triple Km = 〈T ,M,D〉, where T is an ELHI TBox, D is a database over the relational
schema R, and M is a set of mapping assertions of the form φ(f(x)) ψ(x), with ψ an
arbitrary (SQL) query over D, φ an atom of the form A(f(x)) or R(f1(x1), f2(x2))), A and
R, respectively, an atomic concept and role in T , and f(x) a variable term with f in Λ and x
tuple of variables.

Given a source relational schema R, the data wrapping ontology with mappings Km =
〈T ,M,D〉 is derived form R in such a way that for each relation r ∈ R, there are either
atomic concepts Adb and A or roles Rdb and R4, with Adb v A (respectively, Rdb v R), such
that Adb (Rdb) has an associated mapping specifying how to retrieve the data about Adb (Rdb)
from the data sources. By introducing two concepts for a relation, say Adb and A, with a
corresponding assertion Adb v A, we “fix” the db subscripted terms as coming from the data
sources, i.e., a syntactic convenience to be used in the emptiness testing algorithm; however,
they both mean the same concept. Hence, in the rest of the paper, we will refer to such terms
as data source terms and denote them by ΣDB. For details on the semantics of the mappings
we refer to [18].

Example 2. For instance, the following mappings are associated to terms Person, Role and
person role from Figure 1.15.

Person(pers(id)) SELECT id FROM name
Role(role(id)) SELECT id FROM role type
person role(pers(person id), role(role id))

SELECT person id,role id FROM cast info

2.4 Virtual ABox

We next introduce the notion of a virtual ABox, whose assertions are generated by “compiling”
the mapping assertions starting from the data in D.

Definition 1. Given a data wrapping ontology with mappings Km = 〈T ,M,D〉 and a map-
ping assertion M : φ(f(x)) ψ(x) inM, a virtual ABox generated by M from D is the set of
assertions of the form A(M,D) = {φ[f(x)/f(v)] | v ∈ ans(ψ,D)}, where φ[f(x)/f(v)] is a
ground atom, obtained from φ(f(x)) by substituting the n-tuple of variable terms f(x) with
the n-tuple of constant terms f(v). Then, the virtual ABox for Km is the set of assertions
A(M,D) = {A(M,D) | M ∈M}.

Observe that by construction, A(M,D) is over the constants τ(ΓV ,Λ) but represents all the
data stored in the data sources D6. Also, all concept and role names appearing in A(M,D)
are data source terms from ΣDB. Thus, we will consider A(M,D) as an incomplete database.

It follows, from the semantics of the mappings [18] and the construction of the virtual ABox,
that the models of ELHI data wrapping ontology with mappings Km = 〈T ,M,D〉 and those

4Depending on integrity constraints imposed on relations in R, there might be additional roles in the
ontology Km; see [15].

5For the sake of simplicity, we don’t explicitly display in Figure 1.1 the corresponding db terms. As
mentioned, all entities and relationships in the middle layer are fixed to be database terms.

6projected on key attributes for the sake of simplicity

6

of ELHI ontology with virtual ABox K = 〈T ,A(M,D)〉 coincide, i.e., we can express the
semantics of Km in terms of ELHI ontology with a virtual Abox. This immediately implies
an algorithm to answer queries over an ELHI ontology with mappings: (i) compute A(M,D),
and (ii) apply query answering technique of [17] for ELHI ontology K = 〈T ,A(M,D)〉. Given
this, in the rest of the paper, we will only consider an ELHI ontology and a virtual ABox as a
source (incomplete) database. Notice however that for the actual emptiness testing algorithm
we will not explicitly build the virtual ABox; nevertheless, we will use this notion for our
technical development described in the next section.

2.5 Emptiness of Ontology Terms

We now turn our attention to defining when a given predicate in an ontology is empty w.r.t.
the information at the sources. From now on, we will consider a scenario where an ELHI
ontology K = 〈T ,A(M,D)〉 derived form the data sources, i.e., defined, roughly, over the
signature ΣDB, has been enriched by adding to T new terms and/or assertions.

Given a term η in T of an ontology K, we call a query for η a CQ q(x) ← η(x) for η an
atomic concept and q(x, y)← η(x, y) for η a role in T . Our goal is to test whether η is empty
w.r.t. the data at the sources, i.e., w.r.t. ΣDB. Clearly, such a test should involve the query
answering process; thus we now define the notion of query answering in the presence of an
incomplete database.

Definition 2. Given an ELHI ontology K = 〈T ,A(M,D)〉, and a query q over K, the certain
answers to q w.r.t. K, denoted cert(q,K), are the set of tuples t such that t ∈ qI for every
interpretation I that is a model for K.

Then, we say that a given term is empty, if the certain answers to its corresponding query are
empty for every incomplete database A(M,D).

Definition 3. Given an ELHI ontology K = 〈T ,A(M,D)〉 and η a term in T with query q
for η, we say that η is empty w.r.t. ΣDB iff cert(q,K) = ∅ for every database A(M,D).

This defines the problem studied in this paper: given a term η ∈ T with a CQ q for η, test
whether cert(q,K) = ∅ for each A(M,D). Note however that this does not imply that we will
be necessarily computing cert(q,K).

It is well known that the problem of computing answers in the presence of an incomplete
database is often solved via query rewriting under constraints. Specifically, based on [17] we
have that given a query q over an ELHI ontology K = 〈T ,A(M,D)〉, we can compute another
query, a rewriting of q denoted by rew(q, T), such that the answers of q over K and the answers
of rew(q, T) over A(M,D) only coincide, i.e., cert(q,K) = rew(q, T)A(M,D). Thus, we have
the following:

Theorem 1. Given an ELHI ontology K = 〈T ,A(M,D)〉 and η a term in T with query q
for η, η is empty w.r.t. ΣDB iff rew(q, T)A(M,D) = ∅ for every database A(M,D).

The above theorem shows that the problem of testing emptiness of a given term amounts to
verifying whether the rewriting of its query returns empty answer for every possible database.
We will see later that for this purpose we will not need to compute the actual evaluation, which
makes our technique efficient in practice; however, we will employ the above relationship as
described in the sequel.

7

Chapter 3

Emptiness Testing and Repair

3.1 Testing Emptiness

As follows from the previous section, to test emptiness of a given term we have to rewrite its
corresponding query and check whether the obtained rewriting results in being empty. Recent
work on rewriting conjunctive queries over ELHI ontologies [17] shows that for a CQ q over
K = 〈T ,A(M,D)〉, rew(q, T) is a Datalog program. Therefore, according to Theorem 1, our
problem now comes down to testing emptiness of a query predicate q in the rewritten Datalog
program.

We first define some notions that will be needed throughout this section.

3.1.1 Preliminary Notions

A Datalog program Π over an ELHI ontology K consists of (i) a set of rules of the form
head(x)← body(x,y), where body(x,y) is a conjunction of atoms involving concept and role
names in K; (ii) a special rule that is a CQ with a query predicate q in the head.

The extensional database (EDB) predicates of a Datalog program Π are those that do not
appear in the head of any rule in Π, all other predicates are called intentional database (IDB)
predicates. Given a (incomplete) database A(M,D), the evaluation Π(A(M,D)) of Π over
an EDB A(M,D), is the evaluation of the special rule, denoted by qΠ(A(M,D)), taken as a
CQ, over the minimum Herbrand model of Π ∪ A(M,D) [1].

Given a Datalog program Π and an IDB predicate q in Π, the associated AND-OR tree
for q in Π is a set of labelled nodes such that (i) the root of the tree is a (and-)node labelled
by q; (ii) for every and-node labelled by gi, and for every rule ri of Π having gi in the head,
there exists an or-node, child of gi, labelled by ri; (iii) for every or-node labelled with a rule
ri in Π, and for every atom name gij in the body of ri, there exists an and-node labelled with
gij .

An or-branch of an AND-OR tree is a set of and-nodes G that are children of a unique
combination of or-nodes of the tree, i.e., when several sibling or-nodes are present, only children
of one of the or-nodes are contained in G.

8

3.1.2 Datalog Predicate Emptiness: Known Results

In [20], Vardi discussed the problem of deciding emptiness of IDB predicates in Datalog pro-
grams and showed it to be decidable in polynomial time by building the so-called skeletons
of expansion trees, skel(P,Π), for a given IDB predicate P , and constructing a tree automa-
ton whose set of accepted trees is skel(P,Π) (the nonemptiness problem for tree automata is
decidable in polynomial time).

The key idea underlying this result is the observation that a Datalog program can be viewed
as an infinite union of CQs. That is, for each IDB predicate P in Π there is an infinite sequence
C0, C1, . . . of CQs such that for every EDB A(M,D), PΠ(A(M,D)) =

⋃∞
i=0 Ci(A(M,D)).

The Cis are called the expansions of P and can be described in terms of expansion trees.
Roughly, the root of an expansion tree for an IDB predicate P is labelled with P (x) atom and
expanded to its child nodes labelled with the body atoms of the rule for P . Each child node
labelled with IDB atom Pi(xi) is in turn expanded with nodes labelled with the body atoms
of the rule whose head atom unifies with Pi(xi). Each child node labelled instead with EDB
atom is a leaf. The CQ corresponding to such a tree is the conjunction of all EDB atoms for
all leaves in the tree. Then it immediately follows that, given a set of all expansion trees for
an IDB P in Π, trees(P,Π), we have that P is empty in Π iff trees(P,Π) is empty, i.e. all the
corresponding queries for trees(P,Π) are empty.

The problem with expansion trees is clearly the fact that the set of labels on the nodes
of the expansion trees is potentially infinite, due to recursive rules in a Datalog program.
However, [20] shows that we can get rid of variables when building expansion trees, obtaining
skeletons of expansion trees skel(P,Π) that are labelled with only predicate symbols, and still
having the property of P being empty in Π iff skel(P,Π) is empty.

3.1.3 Emptiness Testing Algorithm

We build our approach on the results of [20], and in particular on the possibility of building
finitely labelled trees for IDB predicates. Note that while [20] presents the problem as decision
problem on emptiness of tree automata ([20] is specifically tailored for the exposition of the use
of tree automata), we prefer to present direct algorithms (that do not involve tree automata)
because working with skeleton trees, as we will see, is conceptually much simpler.

Given a term η with a CQ q for η in an ELHI ontology K, we devise our emptiness testing
algorithm in four steps:

1. rewrite q using procedure of [17], obtaining a Datalog program Π,

2. add to Π auxiliary rules for making IDB predicates explicit,

3. for the resulting Datalog program with a query predicate q, build an AND-OR tree for
q, and

4. visit the obtained tree and mark its nodes as empty/nonempty corresponding to empty/nonempty
predicates, which, in turn, correspond to empty/nonempty concepts and roles in K.

In the following we will elaborate on steps (ii)-(iv), for details on the rewriting algorithm we
refer to [17].

9

Adding auxiliary rules to Π

Consider a Datalog program Π resulting from rewriting a CQ for a given term over an ontology
K = 〈T ,A(M,D)〉. Then for each term η that is not among database terms in ΣDB and does
not appear in the head of any rules of Π, add to Π an auxiliary rule η(x) ← η(x) (resp.
η(x, y)← η(x, y)) for η corresponding to an atomic concept (resp. role) in T of K. We denote
the resulting Datalog program by Π∗.

The intuition here is that, since, by construction of the data wrapping ontology in Sec-
tion 2.3, all terms subscripted with db appear only on the left-hand sides of inclusion assertions,
then, by virtue of the rewriting algorithm [17], the corresponding predicates in Π won’t be
saturated and thus are guaranteed to occur only in the bodies of the rules of Π (i.e., as EDB
predicates). However, it is not the case that the rest of the terms of T (i.e., non database
terms) occur only in the heads of the rules of the rewritten program Π. Therefore, using
auxiliary rules above, we explicitly make all non database terms as IDB predicates. Note that
an auxiliary rule η(x)← η(x) is equivalent to a tautology η(x) ∨ ¬η(x). Thus, from a logical
point of view, we do not change the semantics of the program Π. That is, an IDB predicate q
is empty in Π iff q is empty in Π∗, with A(M,D) considered as an EDB, i.e., qΠ(A(M,D)) = ∅
iff qΠ∗(A(M,D)) = ∅

Building skeleton tree for q in Π∗

The skeleton tree for a query predicate q in Π∗, skel(q,Π∗), is an AND-OR tree for q in Π∗ (we
assume all rules are named beforehand), with a condition that an and-node is not expanded
(i.e., is a leaf), if either

• it is labelled with an EDB predicate,

• it has an isomorphic and-node (i.e., a node labelled with the same predicate symbol)
that has already been expanded, or

• it is marked as empty/nonempty i.e., has already been processed before (in another
skeleton tree).

FundingProgram

id

acronym
url

id
start_date
end_date

FundedBy

budgetOrgunit

So
ur

ce

sc
he

m
a

Ex
tra

ct
ed

 o
nt

ol
og

y

En
ric

he
d

on
to

lo
gy

ORGUNIT

...... ...
URLACRONYMID

FUNDING_PROGRAM
BUDGET

......... ...
END_DATESTART_DATEID

ORG_EXPERT_SKILL
PRICE

......... ...
ROLEEXP_SKILL_IDORGUNITID

ExpertiseSkillsOrgExpertSkill

University

orgunitid

exp_skill_id

role

org expert

org fund

EXPERTISE_SKILLS

...
ID

id
price

FundingSource

0,n 0,n

1,n

FinancedByuni finance

Figure 3.1: Example of data wrapping ontology

10

q

r1

TVListing

r2

Movie
r3

acts in Actor

r5

Moviedb

r6

acts in

r7

Actor

Figure 3.2: Skeleton tree corresponding to the Datalog program of Example 3

Example 3. Consider the wrapping ontology in Figure 3.1 and consider the (part of a)
Datalog program with rules r1 to r7 below obtained by rewriting a CQ q(x)← TVListing(x),
i.e., we want to test emptiness of TVListing. We additionally have auxiliary rules r6 and r7 to
make acts in and Actor IDB predicates.

r1 : q(x)← TVListing(x) r5 : Movie(x)← Moviedb(x)
r2 : TVListing(x)← Movie(x) r6 : acts in(x, y)← acts in(x, y)
r3 : Movie(x)← acts in(y, x),Actor(y) r7 : Actor(x)← Actor(x).
r4 : Person(x)← Actor(x)

The skeleton tree for this Datalog program is shown in Figure 3.2. Note that the children of r6

and r7, the and-nodes acts in and Actor are not expanded anymore, since they have isomorphic
nodes that have already been expanded.

Note that the size of the skeleton tree, as well as the time needed to build it, is linear in the
number of the rules in Π∗, since, by construction of the tree, each rule in Π∗ is expanded only
once. Moreover, it is immediate to see that an AND-OR skeleton tree obtained in this way
represents all the skeletons of expansion trees as defined in [20]. So, a predicate q is empty, iff
all or-branches of skel(q,Π∗) are empty. We next define emptiness of nodes in skel(q,Π∗).

Visiting skeleton tree

Once the tree is built, our algorithm examines it bottom-up (depth-first) and marks the
respective nodes as empty or nonempty1. Specifically, starting from an and-leaf labelled with
gij , if gij is an EDB predicate in Π∗, then it is marked as nonempty. The algorithm then visits
next sibling of gij and checks for its emptiness/nonemptiness, so that a parent of gij , an or-
node labelled by a rule ri, is marked as nonempty iff all its children are marked as nonempty.
The algorithm then proceeds to an and-node gi, parent of ri, marking it as nonempty iff at
least one of its children or-nodes are nonempty.

Example 4. Consider the skeleton tree in Figure 3.2 for the query predicate q of Datalog
program of Example 3. We start with acts in leaf and mark it as empty (it is non EDB

1A node can also be temporarily marked as unknown but we skip the details here.

11

predicate). This makes also its parent r6 and, in turn, acts in empty. To decide for r3, we
have to check the or-branch starting with Actor, which results in being empty. Therefore, r3 is
empty. Again, to decide for Movie, we look at the or-branch on the right-hand side. Moviedb

is an EDB predicate, so it is nonempty. Consequently, we mark r5 and Movie as nonempty,
which determines non-emptiness for r2 and then TVListing, r1 and finally q. Indeed, we can
construct a CQ q(x) ← Moviedb(x) that guarantees non-emptiness when evaluated over the
actual data.

It is important to note that emptiness of a node is “global”, meaning that if a node is
empty, it will be empty in every skeleton tree it appears in (and the same for non-emptiness).
This is due to the rewriting algorithm [17] which “compiles” in the Datalog program all the
knowledge about a given term. For this reason, as we have already mentioned, each predicate
in a Datalog program is expanded only once.

Finally, notice that the technique proposed in this section is applicable to ontology lan-
guages in the full spectrum of DLs from ELHI to DL-Litecore [5]. This again because of the
rewriting technique [17] of being able to deal with this range of languages. The rewriting of
a CQ over a DL-Lite KB is a union of CQs [17], however, a Datalog program can be always
viewed as a union of CQs or a single CQ.

3.2 Repairing Empty Terms

So far, we have devised a procedure for verifying whether a given term in a data wrapping
ontology is empty w.r.t. the database terms at the sources. We next present a method for
supporting the repair of empty concepts and roles, consisting of a set of guidelines for ontology
engineers.

3.2.1 Generating Repair Guidelines

To suggest a repair for an empty term, we naturally resort to the Datalog program Π∗ and the
skeleton tree generated from Π∗ by our emptiness testing algorithm. Indeed, the skeleton tree
for a term η, by virtue of its construction, contains as nodes all and only relevant terms for η:
those that contribute or could contribute to its non-emptiness. So an intuitive way to fix an
empty term is to focus on the relevant nodes (in one of the or-branches) of its corresponding
skeleton tree and to possibly expand those nodes by rendering them nonempty. The possible
expansion should obviously be in correspondence with an addition or refinement of a term
or/and assertion in the actual ontology. We elaborate on this idea in the rest of this section.

Given a skeleton tree constructed by the algorithm with an and-node g in the tree, let
G∗ = [G1, . . . , Gn] denote the sequence of sets of its and-nodes, such that, intuitively, each Gi

contains, in a bottom-up fashion, distinct groupings of and-nodes in one of the or-branches
of the tree that should be marked as nonempty in order for g to be marked as nonempty.
Moreover, G∗ is such that, in order for and-nodes in Gi to be marked as nonempty in the tree,
all the Gks, k = {1, . . . , i− 1} have to be marked as nonempty.

Example 5. Suppose the rule r5 was not present in the tree of Figure 3.2. Then, for an and-
node TVListing, there would be only one or-branch in the tree, G∗ = [{acts in,Actor}, {Movie}].
The intuition here is that both, acts in and Actor, and Movie have to be repaired in order for

12

TVListing to become nonempty. And similarly, to repair Movie, both acts in and Actor must
be rendered to be no longer nonempty.

Thus, for each and-node gij in every Gi, of every or-branch of the skeleton tree, our
strategy is to consider gij

as a leaf in the tree, and to examine its possible expansions, whereas
to expand the leaf we mainly need a new rule with its corresponding atom in the head. Given
such a rule, we can track down the needed terms and assertions in the ontology and provide
those repairs as guidelines to the user. For this purpose, we distinguish two cases: (i) gij

corresponds to an atomic concept A, and (ii) gij corresponds to a role R2.
For case (i), our repair service provides two guidelines. First, it suggests to add an inclusion

assertion with A on the right-hand side. This, from the modelling point of view, results in
either defining participation constraints for A to a relationship R, if R appears in any of Gks,
k = {1, . . . , i− 1}, of G∗, or asserting A as a superclass of some class B, verifying beforehand
that B is nonempty. Second, if B(x)← A(x) is present in the program Π∗ and B is nonempty,
the user is warned with misplaced is-a relationship, i.e., maybe B v A should be added instead
of A v B.

For case (ii) we have again two possible guidelines. The first one hints to add an inclusion
assertion between roles with R on the right-hand side. The second, if a concept A appears in
any of Gks as above, and A is nonempty, the service suggests to add an assertion A v ∃R,
i.e., mandatory participation for A in the relationship R.

Example 6. As can be seen, Actor and acts in terms are empty: they are not explicitly mapped
to the database and cannot be rewritten to non empty terms. For Actor, our repair service
suggests to either assert it as a superclass to some (possibly still to be added) nonempty
class, or to replace Actor v Person with Person v Actor which, evidently, in this case is
not appropriate. To repair acts in, the user will be suggested to either assert mandatory
participation for Movie to relationship acts in: Movie v ∃acts in−, or to make acts in more
general than some (possibly still to be added) nonempty relationship.

Finally, if none of the above mentioned repairs are possible, we suggest to explicitly map
to the sources either the actual empty term or its relevant terms corresponding to each gij

in
the skeleton tree.

2In the following, we will leave implicit the correspondence of expansion of an and-node with a rule in the
Datalog program.

13

Chapter 4

Implementation and Evaluation

4.1 Tool for Emptiness Testing and Repair

We have implemented our approach as a (preliminary) plug-in for Protégé1 that enhances
OBDA plug-in2. The OBDA plug-in provides facilities to design Ontology Based Data Access
(OBDA) system components (i.e., data sources and mappings). It supports the definition of
relational data sources and GAV-like mappings to link concepts and roles of the DL-LiteA
ontology [18] to data in the defined sources. It also allows for conjunctive query answering
(using SPARQL syntax), a service commonly offered by OBDA centric reasoners.

The key goal of our plug-in is to provide a support for verifying emptiness of a selected
term in an ontology w.r.t. the data at the defined sources, and for repairing empty terms
by allowing the user to explore different repair solutions. Figure 4.1 shows the screenshot
of our Protégé plug-in when using the wrapping ontology to query the data (using OBDA
plug-in’s ABox Queries tab) at the underlying database (specified together with mappings in
Datasource Manager tab). As can be seen, for a selected class or property at the left segment
of the plug-in’s window, the user can verify, by clicking on Test emptiness button, whether that
term will return any answer when queried against the source database (without computing
the actual evaluation!). When a term results in being empty, the user can ask for guidelines to
repair that term by clicking on Show repairs button. The repairs are then devised by the tool
and shown in a text pane in natural language using standard ontology modelling terminology.
The issue of presenting repairs and assisting a user in incorporating them into an ontology is
the subject of future work.

4.2 Usability Study

In order to determine the practical use and efficiency of the emptiness testing and repair
features implemented in Protégé plug-in, we conducted a small usability study. In this section
we describe its procedure and results obtained.

1http://protege.stanford.edu
2http://obda.inf.unibz.it/protege-plugin

14

http://protege.stanford.edu
http://obda.inf.unibz.it/protege-plugin

Figure 4.1: Emptiness testing and repair in Protégé

4.2.1 Procedure

Participants

The experiment involved 10 subjects, all with good and homogeneous understanding of de-
scription logics reasoning, ontology-based data access, and experience using Protégé. Most
subjects were graduate students (8 graduates and 2 undergraduate) that have attended courses
on the mentioned topics and have used Protégé editor and the OBDA plug-in for their practical
projects.

Database and ontology used

The domain used for the study was that of TV programmes. In particular, for the sources, we
used a real database schema, IMDB movie database, retrieved using IMDbPY3 and containing
21 relational tables. The original database schema was designed in a purely object-oriented
fashion (e.g. table cast info recording for each person in which movie he/she casts with which
character and role (actor, director, etc.) was identified by an automatically generated ID and
not the combination of the aforementioned attributes). Therefore, we annotated the database
with keys.

The TVListings ontology was then automatically derived [15] from the annotated IMDB
database together with mappings, and extended with terms and assertions to refine the movies
domain (e.g., by adding Actor, Genre, etc.) and to (partly) describe TV programmes. The
obtained ontology contained 24 classes and 14 properties; and can be found, in DL-LiteA
notation, in Appendix A. Note that while newly added concepts and roles specific to IMDB
movies domain, as Actor and Genre, can be populated by specifying arbitrary SQL queries
over IMDB database by asserting them in the mappings, this is not the case for “broader”
terms, as TVListingKind, since these terms are not restricted to have instances stored in IMDB
database.

3http://imdbpy.sourceforge.net/

15

http://imdbpy.sourceforge.net/

Tasks

The subjects were randomly divided into two groups, each of 5 subjects:

group 1 received no support for testing emptiness of ontology terms and repairing them;

group 2 could use the Protégé plug-in for testing emptiness of terms and ask for guidelines
to repair empty terms.

Then, each subject was given four simple queries over TVListings ontology returning empty
answers (we use here CQ notation, instead of SPARQL as actually used in OBDA plug-in):

query 1: q(x)← Actor(x), actor cast(x, y),CastCharacter(y);

query 2: q(x)← hasGenre(x, y);

query 3: q(x, y)← tvlisting info(x, y);

query 4: q(y)← TVListing(x), hasTVListingKind(x, y),TVListingKind(y).

Terms Actor, hasGenre, tvlisting info, hasTVListingKind and TVListingKind are empty but are
all repairable.

Given the wrapping ontology and the queries, the subjects were asked to add to the ontol-
ogy new assertions so that the given queries were no longer empty. This involved identifying
atoms responsible for query emptiness and repairing the corresponding terms. Note that
while most subjects were obviously familiar with IMDB domain, none of them had seen before
neither the ontology, nor the queries.

Data collected

The following input was elicited during after the process of “fixing” empty queries:

• during the process, the subject was asked to write down a brief explanation for emptiness
of the query, based on his/her understanding of the problem;

• the time needed to complete the tasks, as well as the number of changes made to the
ontology during entire process was automatically recorded;

• after completing their tasks, the subjects in group 2 were asked to fill a questionnaire
concerning their experience using the tool and give further comments (if any) regarding
its usage;

Goal

The goal of this study was twofold:

• compare the time taken to complete the tasks between the two groups;

• to evaluate overall user experience using the plug-in.

16

4.2.2 Results

Task times and changes made

Overall, as shown in Figure 4.2(a), the average time taken for group 1 was 39 minutes, and 20
minutes for group 2. The time to repair each of the given queries is shown in Figure 4.2(b).

(a) Average time to repair given queries (b) Average time to repair each query

Figure 4.2: Times to repair given queries

The average number of changes made to the ontology in order to repair given queries,
which we consider to be as key sub-task, for group 1 was 11, and 6 for group 2. This is also
shown in Figure 4.3(a). Figure 4.3(b) instead displays the number of changes made to repair
each of the given queries. The total number of changes needed for all queries was 5. This
means that, in average, each subject in group 1 made 5 erroneous changes to repair the given
queries, while in group 2 – 1 erroneous change.

Post-study self-reported data

As mentioned, we have also collected user reactions to the tool. The questionnaire used for
this purpose was composed of 10 short statements, each accompanied by a 5-point scale of
“strongly disagree” (1 point) to “strongly agree” (5 points). Thus, given 5 subjects in group
2, each statement scores to maximum of 25 points. Table 4.2.2 provides for each statement
its overall score.

The response of the users, also reflected in Table 4.2.2, points to the area of improvement
w.r.t. the usability of the plug-in. In particular, the weakness of statement 2 suggests,
besides manifesting that a term is empty, to add some kind of explanation for their emptiness.
Similarly, the form of representation of repairs needs to be improved. Indeed, 2 subjects
commented that the language used assumes good modelling understanding, which may not
be the case. Additionally, when showing possible repairs for a given term, and in particular

17

(a) Average ontology changes made to repair given
queries

(b) Average ontology changes made to repair each
query

Figure 4.3: Changes made to repair given queries

Statement Score
1. It was simple to use this tool. 24
2. I could effectively identify the reason for query emptiness using this
tool.

19

3. I believe I could identify empty terms with this tool faster than
without it.

25

4. I could effectively “fix” empty queries using this tool. 21
5. I believe I could repair empty terms with this tool faster than without
it.

25

6. I found repair guidelines to be adequate. 21
7. I often incorporated repair guidelines to “fix” empty terms. 24
8. The information given by the tool was easy to understand. 20
9. This tool has all the functionalities I expect it to have. 21
10. Overall, I am satisfied with this tool. 25

Table 4.1: Overall rating of the plug-in

18

when suggesting to assert an empty term as a super-entity (or -relationship), 1 user suggested
to add the list of likely terms for that.

Overall, the feedback of the subjects in the study was encouraging. Having a substan-
tial background in the area of DL reasoning and ontology-based data access, they were still
surprised how much easier and faster they could complete the given tasks.

19

Chapter 5

Related Work

To our knowledge, no research has been devoted for supporting the problem addressed in this
paper. There are several ontology engineering methodologies in the literature (see [8] for a
survey); but they are mostly focused on the design of what we call domain ontologies rather
than accessing (relational) data sources. Note that the techniques proposed in this paper can
be used with most of the well established methodologies.

Recently there have been several contributions to the problem of debugging and repairing
unsatisfiable concepts in DL ontologies (see e.g. [11, 4]); however, the problem that we address
is different so these techniques cannot be applied.

As described in Section 3.1, our core algorithm is strictly related to the problem of empti-
ness of intensional predicates in Datalog programs (see e.g. [13]). However, those techniques
cannot be applied directly because of the fact that we adopt the DL ELHI instead of Data-
log. The former is better suited for characterising the kind of axioms required for capturing
common ER/UML constructs, and part of the upcoming OWL2 W3C recommendation.1

It is worth to mention the work in [16] as related, where M. Marx shows that the packed
fragment of FOL admits view-based rewritings. This means that given a FOL fragment and a
database associated to some of its predicates, an arbitrary FOL query involving only implicitly
defined predicates can be executed directly as an SQL query over the database extended with
the pre-computed materialised views that encode the explicit definitions. The restriction to
the views is however in some cases too strong, as for instance TVListing in Figure 3.1 is not
definable in terms of views but can be rewritten to a data source term.

1http://www.w3.org/TR/2009/CR-owl2-profiles-20090611/

20

http://www.w3.org/TR/2009/CR-owl2-profiles-20090611/

Chapter 6

Conclusions and Future Work

This paper presents a technique for supporting ontology engineers in the development of
ontologies for accessing relational data sources. We introduced the problem of deciding the
emptiness of a given query w.r.t. a DL theory where data can be accessed only through
a subset of the concepts and roles (analogously to the EDB/IDB predicates distinction in
Datalog programs). Moreover, we have shown how the algorithm to decide the above problem
can be exploited in order to support the engineer in “repairing” the ontology.

We enhanced the OBDA Protégé plug-in in order to support our technique and we evalu-
ated its effectiveness and usability with an experiment involving external users.

The algorithm presented can be also applied in other scenarios, for example, for optimising
the rewriting. Indeed, rules with empty predicates in the rewriting will not contribute to an
answer, and thus can be eliminated. For instance, rule r3 in Example 3 can be removed from
the program: when evaluated against the actual data, it won’t return any answer.

The next direction for the work reported in this paper is the possibility of testing predicate
emptiness in programs with function symbols. If this was feasible, the rewriting step would
not be needed anymore.

21

Appendix A

TVListings Ontology

CastingInfo v ∃listsCastCharacter TVListing v ∃tvlisting info
CastingInfo v ∃listsCastRole ∃tvlisting info− v TVListingInfo
CastingInfo v ∃listsMovie ∃hasGenre v Movie
CastingInfo v ∃listsPerson ∃hasGenre− v Genre
ActingRole v CastRole ∃movie info v Movie
DirectingRole v CastRole ∃tvlisting info− v MovieInfo
WritingRole v CastRole ∃person info v Person
DistributionCompany v Company ∃person info− v IMDBInfo
ProductionCompany v Company ∃listsMovie v CastingInfo
Genre v IMDBInfo ∃listsMovie− v Movie
Rating v IMDBInfo ∃listsCastCharacter v CastingInfo
MovieCompaniesInfo v ∃involvesCompany ∃listsCastCharacter− v CastCharacter
MovieCompaniesInfo v ∃involvesMovie ∃listsCastRole v CastingInfo
MovieCompaniesInfo v ∃withCompanyType ∃listsCastRole− v CastRole
Actor v Person ∃listsPerson v CastingInfo
Actor v ∃actor cast.CastCharacter ∃listsPerson− v Person
Director v Person ∃involvesCompany v MovieCompaniesInfo
Writer v Person ∃involvesCompany− v Company
Movie v TVListing ∃involvesMovie v MovieCompaniesInfo
∃hasMovieKind v Movie ∃involvesMovie− v Movie
∃hasMovieKind− v MovieKind ∃withCompanyType v MovieCompaniesInfo
∃tvlisting info v TVListing ∃withCompanyType− v CompanyType

Additionally, there are TVListingKind concept and hasTVListingKind role in the ontology for
which no constraints are defined.

22

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] F. Baader. Terminological cycles in a description logic with existential restrictions. In
Proc. of the Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), pages 325–330, 2003.

[3] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the Int. Joint
Conf. on Artificial Intelligence (IJCAI 2005), pages 364–369, 2005.

[4] Franz Baader and Rafael Penaloza. Axiom pinpointing in general tableaux. Journal of
Logic and Computation, 2008.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reason-
ing and efficient query answering in description logics: The dl-lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Data integration
in data warehousing. Int. J. of Cooperative Information Systems, 10(3):237–271, 2001.

[7] P. Chen. The entity-relationship model: Toward a unified view of data. ACM Transactions
on Database Systems (TODS), 1(1):9–36, 1976.

[8] Óscar Corcho, Mariano Fernández-López, and Asunción Gómez-Pérez. Methodologies,
tools and languages for building ontologies: Where is their meeting point? Data and
Knowledge Engineering, 46(1):41–64, 2003.

[9] J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag, 2007.

[10] J. Heflin and J. Hendler. A portrait of the Semantic Web in action. IEEE Intelligent
Systems, 16(2):54–59, 2001.

[11] A. Kalyanpur, B. Parsia, E. Sirin, and B. Cuenca-Grau. Repairing unsatisfiable concepts
in OWL ontologies. In The Semantic Web: Research and Applications, 3rd European
Semantic Web Conference (ESWC 2006), pages 170–184. Springer, 2006.

[12] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st ACM
SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems (PODS 2002),
pages 233–346. ACM, 2002.

[13] A. Y. Levy. Irrelevance Reasoning in Knowledge Based Systems. PhD thesis, Stanford
University, 1993.

23

[14] L. Lubyte and S. Tessaris. Supporting the design of ontologies for data access. In Work-
shop Notes of the Int. Workshop on Description Logics (DL 2008). CEUR Electronic
Workshop Proceedings, 2008.

[15] L. Lubyte and S. Tessaris. Automatic extraction of ontologies wrapping relational data
sources. In Proc. of the 20th Int. Conf. on Database and Expert Systems Applications,
2009. To appear.

[16] M. Marx. Queries determined by views: Pack your views. In Proc. of the 26th ACM
SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems (PODS 2007),
pages 23–30. ACM, 2007.

[17] H. Pérez-Urbina, B. Motik, and I. Horrocks. Rewriting conjunctive queries under descrip-
tion logic constraints. In Proc. of the Int. Workshop on Logics in Databases (LID 2008),
2008.

[18] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

[19] A. P. Sheth and J. A. Larson. Federated database systems for managing distributed, het-
erogeneous and autonomous databases. ACM Computing Surveys, 22(3):183–236, 1990.

[20] M. Y. Vardi. Automata theory for database theoreticians. In Proc. of the 8th ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (PODS 1989),
pages 83–92. ACM, 1989.

[21] H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and
S. Hubner. Ontology-based integration of information - a survey of existing approaches.
In Proc. of the Workshop on Ontologies and Information Sharing, pages 108–117, 2001.

24

	Abstract
	Introduction
	Motivations
	Outline of the Report

	Formal Framework
	Ontology Language
	Queries over ELHI Ontologies
	Wrapping Relational Sources
	Virtual ABox
	Emptiness of Ontology Terms

	Emptiness Testing and Repair
	Testing Emptiness
	Preliminary Notions
	Datalog Predicate Emptiness: Known Results
	Emptiness Testing Algorithm

	Repairing Empty Terms
	Generating Repair Guidelines

	Implementation and Evaluation
	Tool for Emptiness Testing and Repair
	Usability Study
	Procedure
	Results

	Related Work
	Conclusions and Future Work
	TVListings Ontology
	Bibliography

